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Abstract

In a recent paper, Bechhofer and Kulkarni proposed closed adaptive

sequential procedures for a general class of k-population Bernoulli selection

goals. These sequential selection procedures achieve the sane probability of a

correct selection, uniformly in the unknown single-trial "success"

probabilities pi (I < i < k), as do the corresponding single-stage selection

procedures which take exactly n observations from each of the k

populations. The sequential procedures always require less (often

substantially less) than kn observations to terminate experimentation. This

earlier paper described the procedures, discussed their performance in general

terms, and cited several of their optimality properties.

In the present paper we specialize these procedures, and focus on the

particular goal of selecting the population associated with P[k] where

Pl S "'" P] are the ordered pi (I < i < k). We give exact numerical

results for such performance characteristics of the sequential procedure (P*)

as the distribution of the total number of observations N(i) taken from the

population associated with P~i] (1 < i < k), and the total number of

observations N = N(i) taken from all k populations, when the procedure

terminates sampling. A simple upper bound for E{N(i)} (i k) is given.

These results along with other related ones will assist the potential user of

the sequential procedure in assessing its merits relative to those of other

competing procedures.

Key words:

Bernoulli selection problem, clinical trials, selection procedures, ranking

procedures, sequential analysis, adaptive procedures, stationary sampling

procedures, least-failures sampling procedures, two-population optimal sampling

procedure.
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1. Introduction and sumary

Let Ili (I < i < k) denote k > 2 Bernoulli populations with

corresponding single-trial "success" probabilities p1. Denote the ordered

values of the pi by P[1] " P[k]; the values of the pi and the

pairing of the i with the p~j] (1 < ij < k) are assumed to be completely

unknown. The goal of the experimenter is to select the population associated

with P[k]"

Sobel and Huyett [1957] proposed a single-stage selection procedure for this

problem; their procedure involves taking exactly n observations from each of

the k populations. In a recent paper, Bechhofer and Kulkarni [1982]

(hereinafter referred to as B-K), the authors proposed a sequential selection

procedure employing a closed one-at-a-time adaptive sampling rule for this same

problem; their procedure, which takes no more than n observations from any

one of the k populations, achieves the sane probability of a correct

selection as does the single-stage procedure uniformly in = (p1,.. 'Pk)'

The sequential procedure was shown in B-K to have certain optimal properties

for k = 2, and in addition to have various desirable properties for general

selection goals when k > 2.

In the present paper we focus on the particular goal of selecting the

population associated with P[k]" For that goal we give formulae and exact

numerical results for such performance characteristics of the sequential

procedure as the distribution of the total number of observations N 0 ) taken

from the population associated with P[j (I < i < k), and the total number of

observations N _ jkI N(i) taken from all k populations, when the procedure

terminates sampling. These fundamental performance characteristics, along with

the exact achieved probability of a correct selection (P{CS}), can assist the

potential user of the procedure in assessing its merits relative to those of

other competing procedures.
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The plan of the paper is as follows: In Section 2 we describe our

sequential selection procedure P*. A number of examples are given to

illustrate how it operates. In Section 3 we cite several of the optimal

properties of P* for k = 2, and point out general desirable properties of

P* for k > 2. In addition we conjecture certain optimal properties of P*

for k > 2. All of these properties were considered at length in B-K and in

Kulkarni [1981]. They are set forth here in order to serve as reference points

when we discuss in Section 5 the calculated performance characteristics of P*.

Our results concerning such performance characteristics are given in

considerable detail in Section 4. These results constitute the heart of the

present paper. We show in Section 4 how to calculate the exact P{CS} and the

exact distribution of N(i) (I < i < k) and N for P*; the computational

complexity of such calculations as k and/or n increases is stressed. A

comprehensive set of tables containing our calculated results is provided.

These give an excellent over-all picture of the performance of P*. We study

and discuss the performance characteristics in Section 5. Derivations of

general formulae used for calculating some of the P{CS}, E{N}, and E{N(i)l

results for P* are given in the Appendices.

2. The sequential selection procedure (P*)

We shall use the following terminology and notation: By stage m we mean

that a total of m observations have been taken. Let Si (F.) denote a

success (failure) from Rli at stage m (1 < i < k, 1< m < kn-l). Let ni~m

denote the total number of observations taken from 1i through stage m, and

let Z im denote the total number of successes yielded by R i through stage

m (1 < i < k, 1 < m < kn-l).

Our sequential procedure P* - (R*,S*,T*), described below, takes no more

than n observations from any of the k populations. The basis for
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specifying n (e.g., to guarantee an indifference-zone probability requirement

as in Sobel and Huyett [1957], equations (5) or (13), or because of

availability of observations or because of other economic considerations) is of

no concern to us here.

PROCEDURE (P)* FOR SELECTING THE POPULATION ASSOCIATED WITH P[k:

Sampling rule (R*): At stage m (0 < m < kn-l), take the next

observation from the population which has the smallest number

of failures among all i for which ni m < n (1 < i < k).

If there is a tie among such equal-number-of-failure populations,

take the next observation from that one of them which has the (2.1)

largest number of successes. If there is a further tie anong

such equal-number-of-success populations, select one of them

at random and take the next observation from it.

Stopping rule (S*): Stop sampling at the first stage m at which

there exists at least one population n i satisfying (2.2)
m

z > zim + n - n. for all j * i (1 < ij < k).zi ->j,m njm-_

Terminal decision rule (T*): If r > I populations, say Rli ,.,n
1 r

simultaneously satisfy (2.2), then select one of them at (2.3)

random as associated with P[k]"

Remark 2.1: The l.h.s. of (2.2) represents the current total number of

successes from R i while the r.h.s. represents the current total number of

successes from flj plus the total number of potential successes from nj if

all of the remaining observations (n-n Jm) from n after stage m are

successes. Hence, (2.2) tells us to stop sapling as soon as there exists one

or more populations which have at least as many successes as the maximum

possible number of successes at termination from any of the other populations.
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To illustrate the sequential procedure p*, we give the following stopping

sequences:

Exanple 2.1: For (k = 3, n = 2), stop if

Ir ff2 I3

1 2 2

Then nI3 satisfies (2.2). Hence, select 113 as associated with P[3]"

Example 2.2: For (k = 3, n = 2), stop if

E1 1 2 13

F 3  F 2  F 1
1 2 3

F4  F5

F I F z 3 1iThen n satisfies (2.2). Hence, select 112 as associated with P[3]"

Examiple 2.3: For (k =3, n = 2), stop if

11 1 11 2 11 3

S3  S 1 ~51 2 3

F 4  F 2
1 2

Then R13 satisfies (2.2). Hence, select 113 as associated withP[]
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Example 2.4: For (k = 3, n = 2), stop if

ill R 2 __

S3 S1 F51 s2  F3

F4  F2
1 2

Then ni and i2 satisfy (2.2). Hence, select one of them at random as

associated with P[3]"

Remark 2.2: We can regard the sampling for P* as proceeding in cycles;

within each cycle (except perhaps the last one) the outcomes from each

population consist of a sequence of successes followed by a single failure. In

Example 2.5, below, the fourth cycle is truncated by the stopping rule S*.

Example 2.5: For (k = 3, n = 8), stop if

1 2 3

Cycle 1 F2  S
2 3

6
F3

1i 2 3~

Cycle 2 F13  F1' S8
1 2 3

F9F3
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17 15 14F1  F3

Cycle 3 F16

2

Cycle 4 is S18
truncated by S* 3

Then R13 satisfies (2.2). Hence, select a13 as associated with P[3]"

Remark 2.3: R* is not a play-the-winner (PW) sampling rule as can be seen

from S of Example 2.5. R* is PW within a cycle but may not be PW as

sampling proceeds from one cycle to the next. Most of the procedures which

have been proposed for the Bernoulli selection problem employ PW sampling

rules. The reader is referred to B-K for an extensive bibliography of

Bernoulli selection procedures.

Remark 2.4: R* has been proposed by Kelly [1981] for a Bernoulli multi-armed

bandit problem when the discount factor is near one; he refers to it as "the

least failures rule."

3. The Performance of P*

In order to make the present paper self-contained, we cite in Section 3.1

several of the optimal properties of P* for k - 2. In Section 3.2 we

mention several desirable properties for k > 2, and in Section 3.3 we

conjecture certain optimal properties for k > 2. All of these were considered

at length in B-K and in Kulkarni [1981]; the optimal properties for k - 2

are proved in Kulkarni [1982].

The fundamental general theorem concerning the P{CS} achieved by P*,

cited immediately below, was proved (tn greater generality) in B-K. For this
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theorem it is assumed that if two or more populations have a common p-value

equal to max pl ... ,pk}, then those tied populations are tagged in such a way

that their ordering is unique, i.e., one is associated with P[k]' a second

with P[k-l]' etc. In the following theorem we denote by RSS and TSS the

sampling rule and the terminal decision rule, respectively, used by the

Sobel-Huyett single-stage procedure.

Theorem 3.1:

P{CSI(Rss,Tss)}- P{CSI(R*,S*,T*)}

uniformly in = ( ...,pk) for all k > 2.

In Sections 3.1 and 3.3, below, R refers to an arbitrary sampling rule

which takes no more than n observations from any of the k > 2 populations,

and which is used in conjunction with S* and T* of (2.2) and (2.3),

respectively. (Note: R* is a special case of R; Theorem 3.1 was actually

proved for R in B-K.)

3.1 Optimal properties of R* for k = 2
For k = 2 let P denote the conjugate sampling rule in which n. -iz

i'm i'n

and zi,m of (2.1) are replaced by zi'm and ni'm-zi'm, respectively, for

i = 1,2.

Theorem 3.2: Procedure P* = (R*,S*,T*) minimizes E{NJ(pl,P 2)} for

pl+P2 > 1 anong all procedures (R,S*,T*). Procedure T* = (lZ*,S*,T*)

minimizes E{NI(plP 2 ) for pl+P 2 < 1 among all procedures (RS*,T*). Both

P* and T* minimize E{N((PlP 2 )} among all procedures (R,S*,T*) for

p+P2 .



Theorem 3.3: P* minimizes E{N(1)I(PlP 2)1 for p[2] . 1/2 among all

procedures (RS*,T*)

Let N F denote the random total number of "failures" that have occurred

from both populations when sampling stops.

Theorem 3.4: P* minimizes EiNFI(p 1,P 2 )} for pl+p 2 > 1, and T* minimizes

E{NFI(plP 2 )} for P[2] 1< /2 among all procedures (R,S*,T*).

Remark 3.1: The sampling rules R* and *, which for k = 2 possess the

optimality properties given by Theorems 3.2, 3.3 and 3.4, are stationar,, i.e.,

they are independent of n.

3.2 General properties of P* for k > 2

The following additional desirable properties of P* are discussed in

B-K.

a) n < N < kn-l, i.e., N is bounded.

b) P{N = nl} + 1 for P~ll + 1, and P{N = kn-llk} + 1 for P *k + O.

c) Populations with small p-values tend to be sampled less frequently

than those with large p-values.

d) No special tables of constants are necessary to carry out P* for

k > 2, and it is very easy to implement.

3.3 Conjectured optimal property of p* for k > 2

The following conjecture was made (and some supporting results given ) in

B-K:

Conjecture 3.1: P* minimizes E{NI(pl,p 2,...,pk)} for p[l]P[2] > 1 among

all procedures (R,S*,T*) for k > 2.
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4. Exact performance characteristics of P*

The properties of P* mentioned in Section 3 are of a general nature.

However, before an experimenter would choose to use P* he presumably would

wish to have detailed quantitative knowledge concerning its performance

characteristics in order to compare them with the corresponding properties of

competing procedures. In this section we provide such data.

4.1 Formulae

In this section we show for k = 2 and 3 and very small n the steps

involved in computing the exact P{CS} achieved by P*, and the exact joint

distributions of the N (1 < i < k) and the distribution of N. As will
(i) - -

quickly become evident, these calculations are extremely tedious, and rapidly

get out of hand even for k- and/or n-values as small as four. Thus we were

forced to adopt a different approach which we discuss in Section 4.2.

In Tables 4.1, 4.2 and 4.3 we have enumerated all of the termination

sequences and associated quantities for P* for (k = 2, n = 1),

(k = 2, n = 2) and (k = 3, n = 1), respectively. Such tables contain the

information necessary to derive the formulae for the P{CS}, the joint

distribution of the N M (I < i < k), and the distribution of N. From

these we can compute the marginal distribution of the N(i), and E{N( 1

(I < i < k) as well as E{N}.

Thus, for example, using the information in Table 4.2 for k =2, n 2

it is straightforward to derive the following exact formulae:
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Table 4.1

Termination Sequences and Associated Quantities for P"'

when k = 2 and n =1

(I<P2

Probability Number of
Is the of Observations from

Termination Selection Termination
Sequence Selection Correct? Sequence n 1 12 All a

SNo (1/2)pl 1 0 1

Fl 1 Yes (l/2)(1-pl) 1 0 1

S1  112 Yes (112 2  0 1 1

Fl l No (112)(1- 2  1 1

P{CS} (l/2)(1-p1) +(112)p (1/2) + (112)(p- 1
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Table 4.2

Termination Sequences and Associated Quantities for p*

when k = 2 and n - 2

(Pl < P2 )

Probability Number of
Is the of Observations from

Termination Selection Termination
Sequence Selection Correct? Sequence nI  H2  All n

S1$2  iiI  No (1/2)p2 2 0 2111

FIS 2  ii2 Yes (l/2)(l-Pl)p 2  1 1 21 22

$S22 Yes 1/2)p2 0 2 2

F1S2  H No 1/2)(l-p 2)pl 1 1 22 1

S F2 3  12 Yes 1/2)pl(l-pl)p 2  2 1 3
1rl23

S1 F F23  i No (1/2)P (l-pl)(-P 2 ) 2 1 31 12 1 lP2

F1F2 S3  H No (1/2)(l-pl)(l-p 2) (1/2)pI  2 1 31 21 1lr2 3

Fl_ F n2  Yes 1/2)(1-pl)(l-P 2 )(1/2)(1-p I ) 2 1 3

FI F2S3 it Yes (1/2) (l-pi)(l-P 2)(I/2)p 2  1 2 3

I1 No (1/2)(l-P)(1-P 2 )(1/2)( l-P2 ) 1 2 3

22 o 1 2 3S2F2 2S3  Hl No 1/2)P2(l-P2)p I  1 2 3

SI 2F3  Yes (1/2)p 2 (1-P 2 )(1-p 1 ) 1 2 3

F1F2S3  No (1/2)(1-p 2 )(l-P 1)(1/2)p1  2 1 3

F F 3 Yes (1/2)(1-P 2 )(l-P 1)(l/2)(l-pl) 2 1 3

F1F2 3  
2  Yes (1/2) (l-p2)(1-P1 )(/2)p2  1 2 3

21 222

FF2F 31 No (1/2)(l-P 2 )(l-Pl)(1/2)(l-P2) 1 2 3

il2 1 2
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Table 4.3

Termination Sequences and Associated Quantities for P*

when k = 3 and n = 1

(Pl - P2 < P3)

Probability Number of
Is the of Observations from

Termination Selection Termination
Sequence Selection Correct? Sequence II 112 113 Al II

Sl III No (l/3)pI 1 0 0 1

S' I2 No (1/3)p 2  0 1 0 1
2 2

S 1 113 Yes (1/3)p 0 0 1 1

FS2 2 (1/3)(1-pl)(1/2)p2  I 1 0 2

Fl F2  Yes (l/3)(l-pl)(l/2)(l-P2) 1 1 0 21 2 3 -2

FIS2  113 Yes (1/3)(l-pl)(I/2)p3  1 0 1 21 33

FF2 2 No (1/3)(l-p l )( I /2)(1-p 3 ) 1 0 1 2

F2S 2  I No (l/3)(l-P 2)(l/2)p1  1 1 0 22 1 1

FF 2  3 Yes (1/3)(l-p 2 )(1/2)(l-pl) 1 0 2

FI 2  11 Yes (1/3)(l-P 2)(I/2)p 3  0 1 1 2
23 3

F1F2 2 l  No (1/3)(l-p2 )(112)(1-p 3 ) 0 1 1 22 3 1 P) P3 0

F3Sl 2  n11 No (1/3)(l-P 3)(1/2)p1  1 0 1 2

FF 2  n No (1/3)(1-p 3 )(1/2)(1-pl) 1 0 1 231 2

F3S2 2 No (1/3) ( 1-p3)(/2)p2  0 1 1 2

1F2
F3 F2 R1 No (1/3)(1)(1)( /2)(1-p2 ) 0 1 1 2
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Probability of a correct selection

P{CS} = 1/2 + (p2-P1 )[1 - (1/2)(p 1+p2 ) + plP 2]

Distribution of N(1 )

P{N(I) = 01 (1/2)p2
2

P{N(I) = I} = (1/2)(1-p 2-pp +p2)

P{N(I) = 2} = (l/2)(l+plP 2-p2)

E{N(l) (1/2)(3-p2+plP 2-P2)

Distribution of N(2)
(2

P{N(2) = 01 (I/2)pl

2
P{N( 2) = 1}- (1/2)(1-p,-plP 2+Pl)

P{N(2) = 2} = (l/2)(l+plp2-pI)
E{N(2)1 = (I/2)(3-P+P lP2-Pl)

Distribution of N
P{N = 2} = (1/2)[p I + P2 + (PP)2]

P{N = 31 - (1/2)[2 - P P2 - (PI-P 2)2] i,

p1  - 2
E{N} = (1/2)[6 - p, - P2 " (PI'P2) i

E{NIpl - p2 - p  = 3-p

Similarly, from Table 4.3 for k = 3, n I 1 we obtain

Probability of a correct selection

P{CS} = 1/3 + (I/3)(2P 3+plP 2-Pl-p 2) - (I/6)P 3(Pl+P2)

Distribution of N(I)

P{N(j) = 01 - 1/3 + (1/6)(p 2+p3)

P{N(1) = 1} = 2/3 - (1/6)(p 2+p3)

E{N(1)l = 2/3 - (I/6)(p 2+p3)
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Distribution of N(2)

P{N(2) = Of = 1/3 + (l/6)(p 1+P3)

P{N( 2) = 11 = 2/3 - (1/6)(p 1+p3)

E{N( 2)1 = 2/3 - (1/6)(p 1+p3)

Distribution of N(3)

P{N( 3) ' 01 = 1/3 + (1/6)(p 1+P2)

P{N( 3) ' 11 = 2/3 - (1/6)(p 1+p2)

E{N( 3)} = 2/3 - (l/6)(pl+pf-

Distribution of N

P{N = 11 = (1/3)(p 1+P2+P3)

P{N = 2} = I - (l/3)(pl+P2 +P3 )

E{N} = 2 - (1/3)(p 1+p2+p3)

E{NIP, = P2 = P3 = p} = 2-p

As can be seen, such exact calculations are extremely tedious and rapidly

get out of hand as n and/or k increases. (The formula for the P{CS} and

for E{N} is a polynomial of degree kn-l in plP 2,..,pk when the pi

(I < i < k) are all unequal.) Thus we have derived the formulae for the

P{CS}, E{N(i)} (I < i < k), and E{N} for P*, only for n < 3. We give

here our results for E{N} when P1 = P2 = = Pk = p (say).

(k = 2, n = 1):

(k = 2, n = 2): 3-p
(k = 2, n = 3): 5-p-3p2+4p3_2p4

(k = 3, n = 1): 2-p

(k = 3, n = 2): 5-5p+6p2-6p3+2p4

(k = 3, n = 3): 8-8p+17p2-51p 3+93p 4-91p 5 +41p 6-6p7

(k = 4, n = 1): 3-3p+p2
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4.2 Exact calculations

In order to study the performance of p* for k =2 and 3

we have calculated the PJCSJ, the distribution of Ni, and E{N
(i), E{(01

(1 < i < k), and the distribution of N = kl N(i), and E{N} for p* for

given (k,n) and selected values of = (p1,...,Pk).

In Section 4.1 we showed how one can enumerate all of the termination

sequences for P* for given (k,n); from these one can calculate the exact

joint probability distribution of the N 0 ) (1 < i < k) and the exact

probability distribution of N for selected values of R. However, the number

of termination sequences increases so rapidly with k and n that very

quickly one can exceed the storage and time limitations of even a high-speed

computer used to enumerate such sequences. For example, the number of

termination sequences for (k - 2, n = 1), (k = 2, n = 2),...,(k = 2, n = 6)

is 4, 16, 64, 260, 1068, 4420, respectively. (See Tables 4.1 and 4.2 for

(k - 2, n = 1) and (k - 2, n= 2), respectively.) Thus we were led to

employ other methods.

To calculate the P{CS}, recall from Theorem 3.1 that P{CSIP*} =

P{CSI(Rss,Tss)l uniformly in k. Hence we can use the computer with the exact

formulae for P{CSI(RSS,TSS)} to evaluate P{CSIP*}. The formula for the

P(CSJ is particularly simple when P[l] = "" = P[k-l] = P[k] "A, and is

given in Appendix A; calculations based on this formula are contained in Tables

4.11B and 4.21B for k = 2 and k = 3, respectively. We do not exhibit in

this paper the formula for the PfCS} for arbitrary p-values (P[k-l] < P[k );

calculations based on it are contained in Table 4.248.

In Appendix C we derive recursion formulae for computing E{N} for

k - 2. (Such formulae can be derived analogously for k > 2.) Although we
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were not able to solve these recursion equations to obtain a closed form

expression for E{N}, we did employ them to determine E{N} recursively using

a computer. The method proved to be fairly efficient, and we obtained E{N}

results for k = 2, n < 100 and k = 3, n < 40. These are contained in Tables

4.7 and 4.11A for k = 2, and in Tables 4.18, 4.21A and 4.24A for k = 3.

Similar recursion formulae were used to calculate E{N(I)} (i = 1,2,...,k)

for k = 2, n < 100 and k = 3, n < 40. These results are contained in

Table 4.15 for k = 2 and in Table 4.27 for k = 3. The probability

distributions of N and N (i = 1,2,...,k) were computed in like manner.(i)
For k = 2, results are given for the distribution of N for n = 5 in

Tables 4.4 and 4.8, for n = 10 in Tables 4.5 and 4.9, and for n = 20 in

Tables 4.6 and 4.10; results for the distribution of N M (i = 1,2) for

n = 5 and 10 are given in Tables 4.12 and 4.13, respectively. For k = 3,

results are given for the distribution of N for n = 5 in Tables 4.16, 4.19,

4.22, and for n = 7 in Tables 4.17, 4.20, 4.23; results for the distribution

of N(i) (1 < i < 3) for n = 5 and 7 are given in Tables 4.25 and 4.26,

respectively. For k = 3 we were not able to obtain the distribution of N

or the distribution of N (1 < i < 3) for n > 7 since the computing costs
(i) -

would have been prohibitive.

4.2.1 Results for k = 2

Tables 4.4, 4.5 and 4.6 give the exact distribution of N, and E{N} for

k = 2 and n = 5, 10 and 20, respectively, when P[1] = P[2] = 0.1(0.2)0.9;

Table 4.7 gives E{Nj for k = 2 and n = 5(5)100 when

P(1] * P[2] = 0.1(0.2)0.9. Analogously, Tables 4.8, 4.9 and 4.10 give the

exact distribution of N, and E{N} for k = 2 and n - 5, 10 and 20,

respectively, when p[=]+0 .2 * P[2] = 0.2, 0.3(0.2)0.9; Tables 4.11A and 4.11B

give E{N} and the P{CSI, respectively, for k = 2 and n = 5(5)100 when

P[ll +° .2 P[2] - 0.2, 0.3(0.2)0.9.
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Tables 4.12, 4.13 and 4.14 give the exact distribution of N(i), and

E{N(i)} (i = 1,2) for k = 2 and n = 5, 10 and 20, respectively, when

Pill +0 .2 = P[2] = 0.2, 0.3(0.2)0.9, 1.0. Table 4.15 gives E{N(i)} (i = 1,2)

for k = 2 and n = 5(5)100 when p[I] +0 "2 = P[2] = 0.2, 0.3(0.2)0.9, 1.0.

4.2.2 Results for k = 3

Tables 4.16 and 4.17 give the exact distribution of N, and E{N} for

k = 3 and n = 5 and 7, respectively, when P[1] = P[2] = P[3] = 0.1(0.2)0.9;

Table 4.18 gives E{N} for k = 3 and n = 2(2)40 when P[ll = P[2] =

0.1(0.2)0.9. Analogously, Tables 4.19 and 4.20 give the exact distribution of

N, and E{N} for k = 3 and r = 5 and 7, respectively, when p[i]+0.2 =

P[2] +0 .2 = P[3] = 0.2, 0.3(0.20.g; Table 4.21A gives E{N} for k = 3 and

n = 2(2)40 while Table 4.21B ;ives the P{CS} for k = 3 and n = 2(2)50,

both tables being for p(! 0.2 C- p[2]+ 0.2 = P[3] = 0.2, 0.3(0.2)0.9. In

addition, Tables 4.22 and 4.2. give the exact distribution of N,

and E{N} for k = 3 and n = 5 and 7, respectively, when

P[1] +A = P[2] = 0.6 = P[3]-A for A = 0.0(0.1)0.4; Tables 4.24A and

4.248 give E{N} and the P{CS}, respectively, for k = 3 and n = 2(2)40

and n = 2(2)50, respectively, when P[1j+A = P[2] = 0.6 = P[3]-A for

A = 0.0(0.1)0.4.

Tables 4.25 and 4.26 give the exact distribution of N(i) ,  and E{N(i)}

(1 < i < 3) for k = 3 and n = 5 and 7, respectively, when P[1] +A = P[2] =

0.6 * P[3]-A for A = 0.I(0.1)0.4. Table 4.27 gives E{N(i)} (I < i < 3)

for k - 3 and n = 2(2)40 when P[1]+A = P[2] = 0.6 = P[3]-A for

A 0.1(0.1)0.4.
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Table 4.4

Distribution of N, and E{N} for P* when

k = 2, n = 5 and P[2] P[l]

P{N = a} for

a
P[2] 0.1 P[2] m 0.3 P[2] 

= 0.5 P[2] = 0.7 P[2] = 0.9

5 0.000 0.008 0.063 0.240 0.656

6 0.001 0.043 0.156 0.233 0.112

7 0.018 0.151 0.234 0.203 0.093

8 0.151 0.320 0.273 0.176 0.076

9 0.830 0.479 0.273 0.148 0.063

E{N} 8.809 8.219 7.539 6.759 5.777
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Table 4.5

Distribution of N, and E{N} for P* when

k = 2, n = 10 and P[2] = P[1]

PIN - for

a

P[2] = 0.1 P[2] 0.3 P[2] = 0.5 P[2] = 0.7 P[2] = 0.9

10 0.000 0.000 0.002 0.040 0.387

11 0.000 0.000 0.010 0.075 0.105

12 0.000 0.001 0.027 0.092 0.093

13 0.000 0.007 0.054 0.106 0.082

14 0.000 0.024 0.087 0.116 0.073

15 0.002 0.060 0.122 0.121 0.065

16 0.013 0.118 0.153 0.122 0.058

17 0.065 0.191 0.175 0.118 0.052

18 0.233 0.264 0.185 0.110 0.046

19 0.687 0.334 0.185 0.098 0.040

E{N} 18.589 17.585 16.476 14.972 12.586
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Table 4.6

Distribution of N, and E{N} for P* when

k = 2, n = 20 and P[2 ] = P[l]

P{N = a} for

a
P[2] = 0.1 P[2] = 0.3 P[2] = 0.5 P[2] " 0.7 P[2] 0.9

20 0.000 0.000 0.000 0.001 0.135
21 0.000 0.000 0.000 0.004 0.064
22 0.000 0.000 0.000 0.008 0.061
23 0.000 0.000 0.000 0.013 0.059
24 0.000 0.000 0.001 0.019 0.057

25 0.000 0.000 0.003 0.026 0.055
26 0.000 0.000 0.005 0.033 0.053
27 0.000 0.000 0.010 0.041 0.051
28 0.000 0.001 0.017 0.049 0.050
29 0.000 0.003 0.026 0.057 0.048

30 0.000 0.006 0.037 0.064 0.046
31 0.000 0.013 0.051 0.070 0.044
32 0.000 0.026 0.066 0.074 0.042
33 0.001 0.045 0.081 0.078 0.040
34 0.006 0.071 0.095 0.081 0.038

35 0.020 0.102 0.108 0.081 0.036
36 0.058 0.135 0.118 0.081 0.034
37 0.137 0.167 0.125 0.078 0.031
38 0.265 0.196 0.129 0.074 0.029
39 0.514 0.234 0.129 0.068 0.026

E{N} 38.172 36.644 34.985 32.562 27.529
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Table 4.7

E{N} for P* when k =2 and 1[2 P[l]

with n =5(5)100

_____________ ~1[2] ______

n
0.1 0.3 0.5 0.7 0.9

5 8.809 8.219 7.539 6.759 5.777
10 18.589 17.585 16.476 14.972 12.586
15 28.371 27.077 25.666 23.648 19.883
20 38.172 36.644 34.985 32.562 27.529
25 47.990 46.260 44.386 41.619 35.449

30 57.823 55.912 53.845 50.773 43.586
35 67.667 65.591 63.348 59.999 51.899
40 77.521 75.292 72.886 69.282 60.352
45 87.382 85.011 82.452 78.609 68.919
50 97.251 94.744 92.041 87.974 77.580

55 107.125 104.491 101.651 97.372 86.320
60 117.005 114.249 111.278 106.796 95.127
65 126.889 124.016 120.920 116.245 103.990
70 136.778 133.792 130.576 125.715 112.903
75 146.670 143.576 140.244 135.204 121.859

80 156.566 153.368 149.923 144.710 130.853
85 166.464 163.165 159.612 154.232 139.882
90 176.366 172.968 169.310 163.768 148.942
95 186.270 182.777 179.016 173.316 158.030
100 196.176 192.590 188.730 182.877 167.143
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Table 4.8

Distribution of N, and E{N} for P* when

k = 2, n = 5 and P[2] - 0.2 = P[i]

P{N = al for

a
P[2] = 0.2 P[2] = P[2] = 0.5 P[2] = 0.7 P[2] = 0.9

5 0.001 0.005 0.041 0.169 0.490

6 0.008 0.029 0.124 0.234 0.191

7 0.059 0.122 0.231 0.225 0.139

8 0.236 0.303 0.295 0.202 0.103

9 0.696 0.540 0.310 0.170 0.077

E{N} 8.618 8.345 7.709 6.970 6.088
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Table 4.9

Distribution of N, and E{N} for P* when

k = 2, n = 10 and P[2] - 0.2 = P[1]

P{N = a} for

a
P[2] = 0.2 P[2] = 0.3 P[2] = 0.5 P[2] = 0.7 P[2]= 0.9

10 0.000 0.000 0.001 0.025 0.249

11 0.000 0.000 0.007 0.065 0.160

12 0.000 0.001 0.024 0.095 0.129

13 0.001 0.007 0.055 0.116 0.106

14 0.006 0.026 0.096 0.128 0.088

15 0.027 0.071 0.135 0.130 0.074

16 0.089 0.142 0.162 0.126 0.062

17 0.204 0.212 0.174 0.117 0.052

18 0.312 0.251 0.174 0.106 0.043

19 0.362 0.289 0.172 0.092 0.036

E{N} 17.875 17.430 16.406 15.018 12.868
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Table 4.10

Distribution of N, and E{N} for P* when

k = 2, n = 20 and P[2] - 0.2 = P[i]

P{N - al for

a
P[2]= 0.2 P[2] = 0.3 P[2]= 0.5 P[21= 0.7 P[2]= 0.9

20 0.000 0.000 0.000 0.001 0.082
21 0.000 0.000 0.000 0.003 0.093
22 0.000 0.000 0.000 0.009 0.089
23 0.000 0.000 0.000 0.017 0.085
24 0.000 0.000 0.001 0.027 0.081

25 0.000 0.000 0.004 0.039 0.075
26 0.000 0.000 0.009 0.051 0.069
27 0.000 0.001 0.018 0.062 0.062
28 0.000 0.002 0.031 0.071 0.056
29 0.000 0.006 0.047 0.077 0.050

30 0.002 0.016 0.064 0.080 0.044
31 0.007 0.034 0.081 0.080 0.039
32 0.022 0.062 0.nq4 0.078 0.034
33 0.055 0.097 0.1 2 0.074 0.030
34 0.109 0.130 0.104 0.069 0.026

35 0.175 0.151 0.102 0.064 0.023
36 0.218 0.152 0.095 0.058 0.020
37 0.206 0.134 0.088 0.052 0.017
38 0.138 0.111 0.081 0.047 0.015
39 0.068 0.105 0.078 0.042 0.012

E{N} 35.987 35.397 33.805 31.321 26.438



-25-

rable 4.11A

E{NI fo P* when k =2 and -[] 0.2 pl

with n =5(5)100

P(2] _ _ _ _ _ _ _______

n
0.2 0.3 0.5 0.7 0.9

5 8.618 8.345 7.709 6.970 6.088
10 17.875 17.430 16.406 15.018 12.868
15 26.959 26.433 25.114 23.169 19.670
20 35.987 35.397 33.805 31.321 26.438
25 44.996 44.336 42.474 39.454 33.175

30 53.999 53.259 51.125 47.563 39.889
35 63.000 62.171 59.759 55.652 46.589
40 72.000 71.076 68.381 63.723 53.278
45 81.000 79.976 76.992 71.780 59.960
50 90.000 88.872 85.595 79.825 66.638

55 99.000 97.766 94.191 87.861 73.313
60 108.000 106.659 102.782 95.890 79.985
65 117.000 115.550 111.369 103,912 86.656
70 126.000 124.440 119.953 111.930 93.326
75 135.000 133.331 128.534 119.945 99.995

80 144.000 142.220 137.113 127.956 106.663
85 153.000 151.110 145.690 135.965 113.331
90 162.000 159.999 154.267 143.972 119.998
95 171.000 168.888 162.842 151.978 126.665

100 180.000 177.777 171.417 159.982 133.332
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Table 4.11B

P{CS} for P* when k = 2 and - 0.2 =E1

with n = 5(5)100

_____ _____ __ [21

n
0.6 0.7 or 0.5 0.8 or 0.4 0.9 or 0.3 1.0 or 0.2

5 0.7334 0.7374 0.7507 0.7786 0.8362
10 0.8139 0.8188 0.8352 0.8697 0.9463
15 0.8638 0.8688 0.8852 0.9181 0.9824
20 0.8979 0.9027 0.9180 0.9470 0.9942
25 0.9224 0.9268 0.9404 0.9650 0.9981

30 0.9404 0.9443 0.9563 0.9767 0.9994
35 0.9539 0.9574 0.9677 0.9843 0.9998
40 0.9642 0.9672 0.9760 0.9894 0.9999
45 0.9720 0.9746 0.9820 0.9927
50 0.9781 0.9803 0.9865 0.9950

55 0.9828 0.9846 0.9898 0.9966
60 0.9864 0.9880 0.9923 0.9977
65 0.9893 0.9906 0.9942 0.9984
70 0.9915 0.9926 0.9956 0.9989
75 0.9933 0.9942 0.9967 0.9992

80 0.9946 0.9954 0.9975 0.9995
85 0.9957 0.9964 0.9981 0.9996
90 0.9966 0.9972 0.9985 0.9997

*95 0.9973 0.9978 0.9989 0.9998
*100 0.9978 0.9982 0.9991 0.9999
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Table 4.12

Distribution of N (iand ENil(i - 1,2) for P*

when k =2, nl 5 and P[23 -0.2= p11

0.0=O, P[2]O0.2  0.E1)=~, p2 0  ~ jQ3 [J

P{N(,)2al PIN(2 =al P{N()a P{N(2)a} P{N(1)=al P{N(2 =al

0 0.0002 0.0000 0.0012 0.0000 0.0156 0.0012

1 0.0059 0.0000 0.0241 0.0003 0.1094 0.0134

2 0.0493 0.0000 0.1060 0.0039 0.1794 0.0374

3 0.1971 0.0000 0.2368 0.0258 0.1958 0.0673

4 0.5427 0.2728 0.3961 0.3002 0.2482 0.2912

5 0.2048 0.7272 0.2358 0.6698 0.2517 0.5895

E[N(1)} 3.891 -- 13.710 --- 3.307 1 -

E{N (2)1 ---____ 4.727 --- 4.635 -- 4.402
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Table 4.12 (continued)

Distribution of N(i), and E{N(i)} (i = 1,2) for P*

when k = 2, n = 5 and P[2] - 0.2= PIl

P[1)
0 .5 , P[2] =0 . 7  Pill[ 0. 7 , P[2 ]1 0 .9  PE1j

0 .8 , P[2 ] I .0

P{N(1)=a} P{N( 2 )=a} P{N( 1 )=a} P{N( 2 )=a} P{N( 1 )=a} P{N(2 )=a}

0 0.0840 0.0156 0.2952 0.0840 0.5000 0.1638

1 0.2041 0.0469 0.1771 0.0408 0.1000 0.0000

2 0.1664 0.0544 0.1194 0.0335 0.0800 0.0000

3 0.1304 0.0577 0.0834 0.0273 0.0640 0.0000

4 0.1821 0.3075 0.1219 0.3418 0.0512 0.3362

5 0.2330 0.5179 0.2028 0.4726 0.2048 0.5000

E{N( 1 )l 2.821 --- 2.168 --- 1.681 ---

E{N( 2)1 --- 4.148 --- 3.920 --- 3.845
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Table 4.13

Distribution of N(i), and EfN(i)l (i - 1,2) for P*

when k = 2, n = 10 and P[2] - 0.2 = P[i]

PE1)50 .0 , P[2 ]2
0.2  P~1 j0ll0  P[2]-

0 .3  P(ll)O.3 , P(2]8 0 .5

P{N(I)=a} P{N(2)=a} P{N(1 )al P{N(2)al P{N(1)a, P{N(2 )a"'

0 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000

1 0.0000 0.0000 0.0001 0.0000 0.0068 0.0001

2 0.0001 0.0000 0.0012 0.0000 0.0234 0.0004

3 0.0008 0.0000 0.0068 0.0000 0.0533 0.0015

4 0.0055 0.0000 0.0261 0.0000 0.0907 0.0042

5 0.0264 0.0000 0.0706 0.0003 0.1232 0.0095

6 0.0879 0.0000 0.1387 0.0017 0.1398 0.0180

7 0.2007 0.0000 0.1995 0.0074 0.1364 0.0290

8 0.2995 0.0000 0.2099 0.0231 0.1157 0.0402

9 0.3121 0.0895 0.2094 0.1430 0.1323 0.1490

10 0.0671 0.9105 0.1378 0.8244 0.1779 0.7482

E{N(1)} 7.964 --- 7.650 --- 6.881

E{N(2)} --- 9.911 --- 9.780 --- 9.525
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Table 4.13 (continued)

Distribution of N(i) , and E{N(i) (i 1,2) for P*

when k = 2, n = 10 and P[2] - 0.2 = Pill

P~1120.
5 , P[2] =0 .7  PE10 0 .7 , P[2]2 0 .9  P~lil 0 .8 , P[2] -.0

P{N(1 )=a} P{N(2)=a} P{N(1 )=a} P{N(2)=a} P{N(1 )=a} P{N(2)=a}

0 0.0141 0.0005 0.1743 0.0141 0.5000 0.0537

1 0.0646 0.0029 0.1627 0.0129 0.1000 0.0000

2 0.0885 0.0058 0.1247 0.0129 0.0800 0.0000

3 0.1055 0.0097 0.0981 0.0130 0.0640 0.0000

4 0.1116 0.0144 0.0783 0.0131 0.0512 0.0000

5 0.1080 0.0193 0.0627 0.0130 0.0410 0.0000

6 0.0974 0.0241 0.0503 0.0126 0.0328 0.0000

7 0.0825 0.0278 0.0403 0.0120 0.0262 0.0000

8 0.0657 0.0295 0.0322 0.0108 0.0210 0.0000

9 0.0929 0.1750 0.0589 0.3070 0.0168 0.4463

10 0.1694 0.6909 0.1173 0.5786 0.0671 0.5000

E{N( 1 )} 5.761 --- 3.878 --- 2.232 ---

E{N(2)1} --- 9.257 --- 8.990 --- 9.017
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Table 4.14

Distribution of N(i), and E{N(i)1 (i = 1,2) for P*

when k = 2, n = 20 and P[2] - 0.2 =P[1

PE1l= 0 .0 , P[21= 0 .2  P[1 l
=O.l, P[2 ]=

0.3  P[112
0.3 , P[2]

=0 .5

a

P{N( 1 )=a} P{N( 2 )=a} P{N( 1 )=a} P{N( 2 )=a} P{N( 1 )=a} P{N(2)=a}

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0015 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000

6 0.0000 0.0000 0.0001 0.0000 0.0092 0.0000
7 0.0000 0.0000 0.0006 0.0000 0.0179 0.0000
8 0.0001 0.0000 0.0020 0.0000 0.0306 0.0001
9 0.0005 0.0000 0.0061 0.0000 0.0466 0.0002
10 0.0020 0.0000 0.0156 0.0000 0.0639 0.0004

11 0.0074 0.0000 0.0336 0.0000 0.0801 0.0008
12 0.0222 0.0000 0.0616 0.0000 0.0925 0.0016
13 0.0545 0.0000 0.0967 0.0000 0.0991 0.0028
14 0.1091 0.0000 0.1300 0.0002 0.0993 0.0046
15 0.1746 0.0000 0.1502 0.0006 0.0934 0.0072

16 0.2182 0.0000 0.1493 0.0018 0.0828 0.0107
17 0.2053 0.0000 0.1280 0.0047 0.0692 0.0147
18 0.1366 0.0000 0.0943 0.0104 0.0539 0.0188
19 0.0623 0.0096 0.0762 0.0504 0.0594 0.0650
20 0.0072 0.9904 0.0557 0.9318 0.0962 0.8731

E{N(IM} 15.996 --- 15.494 --- 14.104 ---

E{N(2)1 --- 19.990 --- 19.903 --- 19.700
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Table 4.14 (continued)

Distribution of N(i)M and E{N(i)l (i = 1,2) for P*

when k = 2, n = 20 and P[23 - 0.2 =P[]

P[1 =0.5, P[2]=0. 7  p[l]=0. 7 , P[ 2 ]=0. 9  P[1 3)0.8, P[ 2 ]=lO

P{N(1)=al P{N( 2 )=a} P{N())=a} P{N(2)=a} P{N( 1 )=a} P{N( 2 )=a}

0 0.0004 0.0000 0.0608 0.0004 0.5000 0.0058
1 0.0035 0.0000 0.0973 0.0007 0.1000 0.0000
2 0.0087 0.0000 0.0915 0.0009 0.0800 0.0000
3 0.0167 0.0001 0.0861 0.0011 0.0640 0.0000
4 0.0272 0.0001 0.0803 0.0013 0.0512 0.0000
5 0.0389 0.0002 0.0740 0.0016 0.04)0 0.0000

6 0.0507 0.0005 0.0673 0.0018 0.0328 0.0000
7 0.0612 0.0008 0.0605 0.0021 0.0262 0.0000
8 0.0694 0.0012 0.0537 0.0024 0.0210 0.0000
9 0.0747 0.0018 0.0473 0.0027 0.0168 0.0000

10 0.0768 0.0026 0.0412 0.0030 0.0134 0.0000

11 0.0759 0.0037 0.0356 0.0032 0.0107 0.0000
12 0.0725 0.0049 0.0305 0.0035 0.0086 0.0000
13 0.0670 0.0063 0.0260 0.0037 0.0069 0.0000
14 0.0602 0.0079 0.0220 0.0039 0.0055 0.0000
15 0.0526 0.0095 0.0185 0.0040 0.0044 0.0000

16 0.0446 0.0111 0.0154 0.0040 0.0035 0.0000
17 0.0366 0.0125 0.0128 0.0039 0.0028 0.0000
18 0.0290 0.0131 0.0106 0.0036 0.0023 0.0000
19 0.0406 0.0722 0.0192 0.1760 0.0018 0.4942
20 0.0930 0.8516 0.0496 0.7764 0.0072 0.5000

E{N(1)} 11.797 --- 7.015 --- 2.471 ---

E{N(2)} --- 19.525 --- 19.423 --- 19.390
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Table 4.15

E{N(i)} (i * 1,2) for p* when k = 2 and P[2 ]-O.
2 =p[j

with n = 5(5)100

PIl =O. 0 ,  P[2]
=O.2  P[1 ] 0 . I ,  P[2]j 0 .3  PIll=O.3, P[2 ]O

0 .5

E{N(I)1 E{N(2 )} E{N( 1) E{N(2 )} EfN(I)M E{N(2)}

5 3.891 4.727 3.710 4.635 3.307 4.402
10 7.964 9.911 7.650 9.780 6.881 9.525
15 11.988 14.971 11.578 14.855 10.492 14.622
20 15.996 19.990 15.494 19.903 14.104 19.700
25 19.999 24.997 19.402 24.934 17.711 24.763

30 24.000 29.999 23.304 29.955 21.312 29.813
35 28.000 35.000 27.202 34.969 24.907 34.852
40 32.000 40.000 31.097 39.979 28.497 39.883
45 36.000 45.000 34.990 44.985 32.084 44.908
50 40.000 50.000 38.882 49.990 35.668 49.927

55 44.000 55.000 42.773 54.993 39.249 54.942
60 48.000 60.000 46.663 59.995 42.828 59.954
65 52.000 65.000 50.553 64.997 46.405 64.964
70 56.000 70.000 54.443 69.998 49.981 69.971
75 60.000 75.000 58.332 74.998 53.557 74.977

80 64.000 80.000 62.221 79.999 57.131 79.982
85 68.000 85.000 66.111 84.999 60.705 84.986
90 72.000 90.000 70.000 89.999 64.278 89.989
95 76.000 95.000 73.889 95.000 67.851 94.991
100 80.000 100.000 77.778 100.000 71.424 99.993
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Table 4.15 (continued)

E{N(i)} (i = 1,2) for P* when k = 2 and P[2]-0.
2 pi1

with n = 5(5)100

P[1]O. 5 , P[2]=0. 7  P[1 ]=0. 7 , P[2]=0. 9  P[1 ]=0. 8 , P[ 2 ]=l.O

E{N() } E{N(2 )} E{N(M)} E{N(2 )1 E{N()} E{N(2)}

5 2.821 4.148 2.168 3.920 1.681 3.845
10 5.761 9.257 3.878 8.990 2.232 9.017
15 8.766 14.402 5.457 14.212 2.412 14.254
20 11.797 19.525 7.015 19.423 2.471 19.390
25 14.831 24.623 8.587 24.588 2.491 24.455

30 17.862 29.701 10.180 29.709 2.497 29.482
35 20.888 34.764 11.792 34.797 2.499 34.493
40 23.910 39.813 13.420 39.858 2.500 39.497
45 26.928 44.852 15.059 44.901 2.500 44.499
50 29.943 49.883 16.707 49.931 2.500 49.500

55 32.954 54.907 18.361 54.952 2.500 54.500
60 35.963 59.926 20.019 59.967 2.500 59.500
65 38.971 64.942 21.679 64.977 2.500 64.500
70 41.997 69.954 23.342 69.984 2.500 69.500
75 44.982 74.963 25.006 74.989 2.500 74.500

80 47.985 79.971 26.671 79.99 2.500 79.500
85 50.988 84.977 28.336 84.995 2.500 84.500
90 53.991 89.982 30.002 89.996 2.500 89.500
95 56.993 94.985 31.668 94.997 2.500 94.500
100 59.994 199.988 33.334 99.998 2.500 99.500
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Table 4.16

Distribution of N, and E{N} for p* when

k = 3, n = 5 and P[ 3 ] = P[2] = P[I]

P{N = a} for

a P3] P 0.1 P[3] 2 0.3 P[3] 2 0.5 P[3] = 0.7 P[3] 0.9

5 0.0000 0.0024 0.0313 0.1681 0.5905

6 0.0001 0.0057 0.0313 0.0720 0.0656

7 0.0009 0.0362 0.1172 0.1433 0.0728

8 0.0008 0.0235 0.0977 0.1455 0.0751

9 0.0147 0.1026 0.1289 0.1360 0.0743

10 0.0097 0.1058 0.1514 0.1241 0.0710

11 0.1099 0.1807 0.1611 0.0997 0.0239

12 0.0866 0.2078 0.1409 0.0620 0.0149

13 0.3968 0.2103 0.0981 0.0354 0.0084

14 0.3805 0.1249 0.0422 0.0138 0.0035

E{N} 12.976 11.433 9.949 8.400 6.435
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Table 4.17

Distribution of N, and EfN} for P* when

k =3, n = 7 and P[3] = P[2] =Pill

PIN = al for

a

P[3] =0.1 P[3] = 0.3 P[3] = 0.5 P[1= 0.7 P[3] 0.9

7 0.0000 0.0002 0.0078 0.0824 0.4783
8 0.0000 0.0005 0.0078 0.0353 0.0531
9 0.0000 0.0048 0.0410 0.0893 0.0622

10 0.0000 0.0030 0.0361 0.0980 0.0665
11 0.0003 0.0191 0.0571 0.0987 0.0680

12 0.0002 0.0210 0.0759 0.0983 0.0669
13 0.0040 0.0493 0.0938 0.0996 0.0645
14 - 0.0026 0.0681 0.1097 0.0994 0.0609
15 0.0300 0.1033 0.1240 0.0944 0.0290
16 0.0245 0.1368 0.1298 0.0759 0.0203

17 0.1367 0.1680 0.1229 0.0575 0.0139
18 0.1313 0.1811 0.0986 0.0388 0.0089
19 0.3546 0.1571 0.0665 0.0231 0.0052
20 0.3157 0.0876 0.0290 0.0094 0.0022

E{N} 18.676 16.728 14.785 12.527 9.540
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Table 4.18

E{N} for P* when k =3 and P[3] P[~2] P[l]

with n = 2(2)40

____ ____ ___ ___ ___ ____ _ [3]_ _ _ _ _ _ __ _ _ _ _ _ _ _

n
0.1 0.3 0.5 0.7 0.9

2 4.554 3.894 3.375 2.862 2.298
4 10.142 8.843 7.641 6.455 4.976
6 15.822 14.065 12.337 10.426 7.959
8 21.536 19.414 17.279 14.692 11.168
10 27.271 24.843 22.371 19.188 15.545

12 33.023 30.329 27.563 23.858 18.059
14 38.791 35.857 32.828 28.661 21 .693
16 44.573 41 .419 38.149 33.567 25.438
18 50.368 47.009 43.514 38.554 29.285
20 56.173 52.621 48.915 43.606 33.231

22 61.987 58.253 54.348 48.713 37.268
24 67.810 63.902 59.807 53.864 41 .392
26 73.640 69.565 65.289 59.055 45.596
28 79.476 75.241 70.791 64.279 49.875
30 85.317 80.929 76.311 69.534 54.223

32 91.164 86.627 81.848 74.814 58.635
34 97.016 92.335 87.400 80.119 63.106
36 102.872 98.051 92.964 85.445 67.632
38 108.731 103.776 98.541 90.791 72.208
40 114.595 109.507 104.130 96.155 76.831
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Table 4.19

Distribution of N, and E{N} for P* when

k = 3, n = 5 and P[33 - 0.2 = P[2] P[1]

P{N = a} for

a

P[3 0.2 3] =0.3 P3] = 0.5 P[3] = 0.7 P[3]= 0.9

5 0.0001 0.0008 0.0120 0.0769 0.3089

6 0.0006 0.0030 0.0204 0.0626 0.1059

7 0.0051 0.0194 0.0873 0.1558 0.1343

8 0.0026 0.0089 0.0546 0.1316 0.1291

9 0.0461 0.0876 0.1336 0.1324 0.1150

10 0.0102 0.0433 0.1391 0.1352 0.0979

11 0.1843 0.2013 0.1682 0.1297 0.0567

12 0.0410 0.1386 0.1737 0.0951 0.0307

13 0.3277 0.2926 0.1416 0.0580 0.0157

14 0.3823 0.2045 0.0697 0.0227 0.0058

E!N} 12.709 11.995 10.572 9.087 7.444
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Table 4.20

Distribution of N, and E{N} for P* when

k 3, n = 7 and P[3] - 0.2 = P[2] P~l

P{N - a} for

a
P3]= 0.2 P[3J = 0.3 P[3l = 0.5 P[3] = 0.7 P[3] =0.9

7 0.0000 0.0001 0.0027 0.0327 0.2143
8 0.0000 0.0003 0.0046 0.0272 0.0771
9 0.0003 0.0025 0.0274 0.0867 0.1092

10 0.0001 0.0009 0.0166 0.0764 0.1106
11 0.0041 0.0161 0.0533 0.0848 0.1027

12 0.0004 0.0069 0.0577 0.0952 0.0915
13 0.0279 0.0539 0.0840 0.1030 0.0815
14 0.0016 0.0325 0.1023 0.1060 0.0722
15 0.1114 0.1154 0.1203 0.1062 0.0544
16 0.0066 0.0901 0.1336 0.0972 0.0363

17 0.2621 0.1768 0.1389 0.0799 0.0240
18 0.0262 0.1635 0.1242 0.0565 0.0147
19 0.3146 0.2012 0.0911 0.0344 0.0082
20 0.2447 0.1398 0.0432 0.0138 0.0032

E{N} 18.014 17.190 15.405 13.342 10.794
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Table 4.21A

EfN} for p* when k =3 and P[3 ] -0.2 P["2] =P[l]

with n = 2(2)40

n
0.2 0.3 0.5 0.7 0.9

2 4.640 4.259 3.672 3.172 2.649
4 10.036 9.397 8.202 7.034 5.798
6 15.367 14.593 12.978 11.194 9.112
8 20.651 19.786 17.849 15.521 12.487

10 25.905 24.972 22.765 19.940 15.889

12 31.139 30.152 27.702 24.411 19.303
14 36.361 35.326 32.648 28.908 22.718
16 41.575 40.494 37.597 33.419 26.129
18 46.784 45.655 42.545 37.935 29.532
20 51.990 50.810 47.490 42.451 32.927

22 57.193 55.960 52.430 46.964 36.314
24 62.396 61.106 57.366 51.473 39.694
26 67.597 66.246 62.297 55.976 43.068
28 72.798 71.384 67.223 60.473 46.435
30 77.999 76.517 72.144 64.964 49.798

32 83.199 81.648 77.061 69.448 53.157
34 88.400 86.776 81.972 73.926 56.513
36 93.600 91.902 86.880 78.398 59.865
38 98.800 97.026 91.783 82.865 63.215
40 104.000 102.149 96.683 87.327 66.563
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Table 4.21B

PfCS} for P* when k 3 and P[ 3] - 0.2 P[2 PE2J

with n = 2(2)50

____ ___ ___ _ __ ___ ___ ___ P[3] _ _ _ _ _ _ _ _______

n
0.2 0.3 0.5 0.7 0.9

2 0.5733 0.5376 0.5005 0.4933 0.4968
4 0.7269 0.6355 0.5768 0.5716 0.6074
6 0.8252 0.7022 0.6329 0.6285 0.6819
8 0.8882 0.7531 0.6778 0.6740 0.7373
10 0.9284 0.7935 0.7151 0.7118 0.7808

12 0.9542 0.8263 0.7469 0.7440 0.8159
14 0.9707 0.8532 0.7743 0.7717 0.8447
16 0.9812 0.8755 0.7982 0.7959 0.8685
18 0.9880 0.8942 0.8191 0.8171 0.8883
20 0.9923 0.9099 0.8376 0.8358 0.9050

22 0.9951 0.9231 0.8539 0.8523 0.9190
24 0.9969 0.9342 0.8685 0.8670 0.9309
26 0.9980 0.9437 0.8814 0.8802 0.9409
28 0.9987 0.9518 0.8930 0.8919 0.9494
30 0.9992 0.9586 0.9034 0.9024 0.9567

32 0.9995 0.9645 0.9127 0.9118 0.9629
34 0.9997 0.9695 0.9211 0.9202 0.9681
36 0.9998 0.9738 0.9286 0.9278 0.9726
38 0.9999 0.9774 0.9353 0.9347 0.9765

40 0.9806 0.9414 0.9408 0.9798

42 0.9833 0.9469 0.9464 0.9826
44 0.9856 0.9519 0.9514 0.9850
46 0.9876 0.9563 0.9559 0.9871
48 0.9893 0.9604 0.9600 0.9889
50 0.9907 0.9640 0.9637 0.9904
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Table 4.22

Distribution of N, and E{N} for P* when

k = 3, n = 5 and equally-spaced P[] P[2], P[3]

P{N = a} for

a Pil] 0.6 Pill = 0.5 P[] = 0.4 p[ = 0.3 piE] = 0.2

P[2= 0.6 P12]= 0.6 P12= 0.6 P[21 0.6 P[21 = 0.6

P[3] = 0.6 P[31 0.7 P[3] =0.8 P[3] 0.9 P[3] = 1.0

5 0.0778 0.0924 0.1386 0.2236 0.3594

6 0.0518 0.0642 0.1046 0.1832 0.3171

7 0.1431 0.1544 0.1805 0.1961 0.1541

8 0.1337 0.1385 0.1462 0.1378 0.0852

9 0.1348 0.1341 0.1268 0.1013 0.0497

10 0.1388 0.1329 0.1130 0.0765 0.0295

11 0.1351 0.1243 0.0932 0.0482 0.0041

12 0.0990 0.0872 '),0567 0.0218 0.0008

13 0.0613 0.0520 0.0299 0.0089 0.0001

14 0.0245 0.0202 0.0105 0.0026 0.0000

E{N} 9.188 8.942 8.266 7.313 6.259
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Table 4.23

Distribution of N, and E{NI for P* when

k = 3, n = 7 and equally-spaced P[I]' P[2]' P[3]

P{N = a} for

a Pill = 0.6 Pill= 0.5 Pill = 0.4 Pil = 0.3 Pm1) = 0.2

P[2] = 0.6 P[2] = 0.6 P[2] = 0.6 P[2] = 0.6 P[2] = 0.6

P[3] = 0.6 P[3] = 0.7 P[31 = 0.8 P(3] = 0.9 P:3] = 1.0

7 0.0280 0.0394 0.0798 0.1688 0.3427
8 0.0187 0.0278 0.0618 0.1421 0.3104
9 0.0694 0.0865 0.1322 0.1805 0.1527
10 0.0696 0.0821 0.1119 0.1317 0.0849
11 0.0784 0.0872 0.1036 0.1006 0.0496

12 0.0907 0.0955 0.0994 0.0796 0.0295
13 0.1027 0.1032 0.0955 0.0645 0.0177
14 0.1102 0.1063 0.0888 0.0519 0.0106
15 0.1143 0.1059 0.0795 0.0385 0.0015
16 0.1064 0.0941 0.0612 0.0221 0.0003

17 0.0894 0.0754 0.0422 0.0114 0.0001
18 0.0649 0.0524 0.0256 0.0053 0.0000
19 0.0406 0.0316 0.0136 0.0022 0.0000
20 0.0168 0.0126 0.0050 0.0007 0.0000

E{N} 13.706 13.204 11.886 10.163 8.412
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Table 4.24A

E{N} for P* when k =3, n =2(2)40 and

equally-spaced p[j], P[2]' P[3]

[)-0.6 pil=- 0.5 pill 0.4 pil 0.3 pill 0.2

n P[2 0. P[2] 0.6 P[2] 0.6 P[2] 0.6 P[2] = 0.6

-[j 0.6 P[3] 0.7 P[3] =0.8 P[3] 0.9 P[3] = 1.0

2 3.123 3.098 3.021 2.896 2.722
4 7.054 6.905 6.485 5.863 5.133
6 11.410 11.047 10.069 8.746 7.349
8 16.060 15.405 13.714 11.570 9.456

10 20.906 19.900 17.395 14.358 11.505

12 25.888 24.483 21.096 17.124 13.526
14 30.967 29.125 24.810 19.878 15.535
16 36.120 33.806 28.530 22.626 17.539
18 41.332 38.513 32.253 25.373 19.541
20 46.590 43.240 35.977 28.120 21.541

22 51.888 47.980 39.699 30.870 23.542
24 57.220 52.729 43.420 33.623 25.542
26 62.581 57.485 47.137 36.379 27.542
28 67.967 62.246 50.852 39.139 29.542
30 73.376 67.010 54.563 41.903 31.542

32 78.806 71 .777 58.270 44.669 33.542
34 84.254 76.545 61.975 47.439 35.542
36 89.718 81.314 65.676 50.211 37.542
38 95.198 86.083 69.373 52.985 39.542
40 100.692 90.851 73.069 55.761 41.542
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Table 4.248

P{CS} for P* when k =3, n =2(2)50 and

equally-spaced p~] P[] P[3]

Pil= 0.6 Pil 0.5 Pill =0.4 Pill 0.3 Pfill= 0.2

nl P[] 0.6 P(2 0.6 P[2 ] 0.6 P[2 ] 0.6 P(2] 0.6

P[3 1 = 0.6 P[3] =07 P[3 ] 0.8 P[3 ] 0.9 P[3] =10

2 0.3333 0.4488 0.5696 0.6902 0.8048
4 0.3333 0.5051 0.6740 0.8198 0.9345
6 0.3333 0.5460 0.7398 0.8837 0.9766
8 0.3333 0.5790 0.7866 0.9210 0.9916
10 0.3333 0.6070 0.8217 0.9448 0.9970

12 0.3333 0.6313 0.8491 0.9608 0.9989
14 0.3333 0.6529 0.8710 0.9718 0.9996
16 0.3333 0.6721 0.8889 0.9796 0.9999
18 0.3333 0.6895 0.9038 0.9851
20 0.3333 0.7053 0.9162 0.9891

22 0.3333 0.7198 0.9268 0.9920
24 0.3333 0.7332 0.9358 0.9941
26 0.3333 0.7455 0.9435 0.9956
28 0.3333 0.7570 0.9502 0.9968
30 0.3333 0.7676 0.9561 0.9976

32 0.3333 0.7775 0.9611 0.9982
34 0.3333 0.7868 0.9656 0.9987
36 0.3333 0.7955 0.9695 0.9990
38 0.3333 0.8037 0.9729 0.9993

40 0.3333 0.8114 0.9759 0.9995

42 0.3333 0.8187 0.9786 0.9996
44 0.3333 0.8256 0.9109 0.9997
46 0.3333 0.8321 0.9830 0.9998
48 0.3333 0.8383 0.9849 0.9998
50 0.3333 0.8441 0.9865 0.9999
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Table 4.25

Distribution of N(i), and E{Ni)} (i = 1,2,3) for P*

when k = 3, n = 5 and (plp[2],p[3] = (0.5,0.6,0.7) and (0.4,0.6,0.8)

PIl =O. 5 , P[2]
0 .6 , P[3]=

0 .7  P1ll =0 .4 , P[21=0 .6 , P[3]=0 . 8

P{N(I)=a} P{N( 2 )=a} P{N(3)=a} P{N( 1 )=a} P{N( 2 )=a} P{N( 3 )=a}

0 0.1186 0.0979 0.0537 0.1942 0.1678 0.0437

1 0.2656 0.1926 0.1127 0.3577 0.2210 0.0644

2 0.1855 0.1494 0.1008 0.1920 0.1502 0.0581

3 0.1283 0.1156 0.0881 0.1068 0'.1062 0.0519

4 0.1181 0.1475 0.1867 0.0703 0.1195 0.2117

5 0.1839 0.2970 0.4580 0.0791 0.2352 0.5702

E{N(I}M 2.414 --- 1.738 ---

E{N( 2 )} --- 2.913 --- --- 2.494

E{N( 3)} --- 3.615 --- 4.034
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Table 4.25 (continued)

Distribution of N(i), and EIN(i)} (i = 1,2,3) for P*

when k = 3, n = 5 and (P[,],P[2],P[3]) = (0.3,0.6,0.9) and (0.2,0.6,1.0)

Pill =0 .3  P[2 ]=0 -6 , P[3] = . 9  PI[=0 .2 , P[2]=0 -6 , PC3] = .O

P{N(,)=a} P{N(2)=al P{N(3) a1 P{N( 1)=a} P{N( 2 )=a} P{N( 3 )=a}

0 0.3188 0.2960 0.0400 0.5130 0.5001 0.0390

1 0.4215 0.2372 0.0290 0.3896 0.2000 0.0000

2 0.1517 0.1429 0.0251 0.0779 0.1200 0.0000

3 0.0606 0.0910 0.0214 0.0156 0.0720 0.0000

4 0.0274 0.0823 0.2470 0.0031 0.0432 0.3073

5 0.0199 0.1507 0.6374 0.0008 0.0648 0.6537

E{N( 1 )} 1.116 --- --- 0.609 ......

E{N (2)} --- 1.879 --- --- 1.153 ---

EIN( 3 )} ...... 4.319 ...... 4.498
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Table 4.26

Distribution of N M , and EIN(i)l (i-1,2,3) for P*

when k = 3, n = 7 and (p[],P[2],P[3 = (0.5,0.6,0.7) and (0.4,0.6,0.8)

P[l] 0 .5 ,  P[2] =0 .6 ,  P[3]2 0 .7  P[I] 0 4 ,  P[2] =0 .6 ,  P[3] 0 .8

P{N(1 )=a} P{N(2)=a} P{N( 3)=a} P{N( 1)=a} P{N( 2)=a} P{N( 3)=a}

0 0.0544 0.0449 0.0178 0.1169 0.1056 0.0148
1 0.1800 0.1229 0.0544 0.3004 0.1811 0.0299
2 0.1727 0.1232 0.0640 0.2123 0.1443 0.0328
3 0.1495 0.1168 0.0700 0.1424 0.1167 0.0353

4 0.1180 0.1032 0.0707 0.0895 0.0926 0.0362
5 0.0867 0.0853 0.0659 0.0536 0.0713 0.0347
6 0.0809 0.1093 0.1456 0.0364 0.0810 0.1685
7 0.1578 0.2944 0.5115 0.0484 0.2074 0.6477

E{N(1)} 3.469 --- --- 2.336 ......

E{N(2)1 --- 4.276 --- --- 3.485 ---

E{N(3 )} _. --- 5.459 --- --- 6.065
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Table 4.26 (continued)

Distribution of N and E(N(i) 1 0 = 1,2,3) for P*

when k = 3, n 7 and (p[1],P[2],P[3]) = (0.3,0.6,0.9) and (0.2,0.6,1.0)

PE1= 0 . 3 , P[2]=O.
6 , P[3]=0.9 Pcll=0 . 2 , P[2 ]=

0 .6 , P[3]
=1.0

a

P{N(I)=al P{N( 2 )=a} P{N(3)=a} P{N(I)=a} P{N(2 )=a} P{N( 3 )=a}

0 0.2487 0.2392 0.0141 0.5047 0.5000 0.0140
1 0.4209 0.2341 0.0138 0.3963 0.2000 0.0000
2 0.1812 0.1513 0.0135 0.0793 0.1200 0.0000
3 0.0817 0.1024 0.0132 0.0159 0.0720 0.0000

4 0.0367 0.0710 0.0127 0.0032 0.0432 0.0000
5 0.0164 0.0499 0.0117 0.0006 0.0259 0.0000
6 0.0079 0.0475 0.2180 0.0001 0.0156 0.3240
7 0.0065 0.1047 0.7029 0.0000 0.0233 0.6620

E{N (1)} 1.350 --- --- 0.619 ---

E{N(2)} --- 2.395 --- --- 1.215

E{N(3)} --- 6.418 6.578



-50-

Table 4.27

E{N(i)} (i = 1,2,3) for P* when k = 3 and

(p[1]P[2],P[3]) = (0.5,0.6,0.7) and (0.4,0.6,0.8) with n = 2(2)40

P[I]O .5 , P[2] =0 .6 , P[3]= 0.7  PIli =O.4 , P[2]
=0 .6 , P[3 ]

=0 .8

E{N(I)} E{N(2)} E{N(3)} E{N()} E{N(2 )} E{N( 3)}

2 0.923 1.025 1.149 0.798 0.977 1.247
4 1.905 2.259 2.741 1.438 1.993 3.054
6 2.935 3.587 4.525 2.037 2.991 5.041
8 4.015 4.977 6.412 2.639 3.977 7.098
10 5.136 6.409 8.354 3.258 4.959 9.178

12 6.287 7.868 10.329 3.894 5.943 11.260
14 7.457 9.346 12.322 4.542 6.931 13.337
16 8.642 10.837 14.327 5.200 7.922 15.407
18 9.837 12.336 16.340 5.865 8.918 17.470
20 11.038 13.843 18.359 6.535 9.916 19.526

22 12.244 15.354 20.382 7.207 10.917 21.575
24 13.453 16.868 22.408 7.882 11.919 23.619
26 14.665 18.384 24.436 8.557 12.922 25.659
28 15.879 19.902 26.465 9.232 13.926 27.4
30 17.094 21.421 28.495 9.907 14.931 29.725

32 18.310 22.941 30.525 10.582 15.935 31.753
34 19.527 24.462 32.556 11.256 16.940 33.778
36 20.744 25.983 34.587 11.930 17.945 35.800
38 21.961 27.504 36.618 12.604 18.949 37.821
40 23.178 29.025 38.648 13.277 19.953 39.839
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Table 4.27 (continued)

E{N(i)} (i = 1,2,3) for P* when k = 3 and

(p[l],P[2],P[3j) = (0.3,0.6,0.9) and (0.2,0.6,1.0) with n = 2(2)40

P~1l2 0 . 3 , P[2]
=O.6 , P[3] =0 . 9  P~112

0 .2 , P[2]
=O.6 , P[3 ]

= .O

E{N(I 1) E{N(2)} E{N(3)1 E{N( 1)} E{N(2)} E{N(3 )1

2 0.665 0.897 1.333 0.528 0.789 1.405
4 0.989 1.589 3.285 0.597 1.087 3.448
6 1.235 2.145 5.366 0.615 1.192 5.542
8 1.465 2.632 7.472 0.621 1.229 7.605
10 1.698 3.086 9.574 0.624 1.242 9.638

12 1.937 3.526 11.662 0.625 1.247 11.654
14 2.183 3.961 13.734 0.625 1.249 13.661
16 2.436 4.399 15.792 0.625 1.250 15.665
18 2.694 4.841 17.837 0.625 1.250 17.666
20 2.958 5.289 19.873 0.625 1.250 19.666

22 3.225 5.744 21.901 0.625 1.250 21.667
24 3.496 6.204 23.923 0.625 1.250 23.667
26 3.769 6.671 25.940 0.625 1.250 25.667
28 4.045 7.142 27.953 0.625 1.250 27.667
30 4.322 7.618 29.963 0.625 1.250 29.667

32 4.601 8.097 31.971 0.625 1.250 31.667
34 4.881 8.580 33.977 0.625 1.250 33.667
36 5.162 9.066 35.982 0.625 1.250 35.667
38 5.445 9.554 37.986 0.625 1.250 37.667
40 5.727 10.045 39.989 0.625 1.250 39.667
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5. Discussion of performance characteristic results

In the next three subsections we discuss three related performance

characteristics of P*, specifically, the distribution of N, and E{N} in

Section 5.1, the distribution of N(i) ,  and E{N(i)} (1 K i < k) in

Section 5.2, and the P{CS} in Section 5.3. Each characteristic is important

in its own right, e.g., E{N} can be compared directly with kn, the total

number of observations required by the single-stage procedure of Sobel and

Huyett, since both achieve the same P{CS} uniformly in (P' .. pk); this

comparison can be made without knowledge of the achieved P{CS}. However, an

increase in the P{CS} is purchased at the cost of an increase in E{N}, and

therefore it sometimes may be important to know the P{CS} that actually would

be achieved for particular (p1,.. 'Pk) when the single-stage procedure (or

P*) is used. Similar trade-offs arise when we consider the distribution of

N(i), and E{N(i)} (I < i K k) along with the P{CS}. For example, E{N(1)1

is important in clinical trials since in that context it represents the

expected number of patients subjected to the least effective treatment, and one

would clearly seek to make this quantity small for given P{CS}. Since the

performance characteristics E{N}, E{N(i)} (1 < i < k) and P{CS}

interplay, we study them together.

5.1 Distribution of N, and E{N}

Tables 4.4, 4.5 and 4.6 show for k = 2 and n = 5, 10 and 20,

respectively, how the distribution of N, and E{N} react to changes in the

common value of P[2 ] = P[1]. Tables 4.16 and 4.17 give analogous results for

k = 3 and n = 5 and 7, respectively, when the common value of P[3 ] =

changes. It is to be recalled that P{N = nf + 1 as p[1] * I and

P{N = kn-1} + 1 as PEk] + 0; the approach to these limiting values is
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already clearly evident for P[il - 0.9 and P[k] 0.1, respectively. The

E{N}-values are to be compared with kn, the total number of observations

required by the single-stage procedure which acheves the sane P{CS} as P*

uniformly in (Pl' .... Pk)" Clearly the saving in E{N} resulting from using

p* in place of the single-stage procedure can be substantial, particularly for

P[il close to unity. Tables 4.7 and 4.18 show how these savings change with

increasing n for k = 2 and 3, respectively. For example, when k = 2 and

Pi1] = P[2] 2 0.9 the absolute saving in E{N} increases from 2(5)-5.777 =

4.223 to 2(40)-60.352 = 19.648 as n increases from 5 to 40; when k = 3

and Pl = P[2] = P[3] = 0.9 the absolute saving in E{N} increases from

3(5)-6.435 = 8.565 to 3(40)-76.831 = 43.169 as n increases from 5 to 40.

The corresponding relative savings (kn-E{N})/kn decrease with increasing n

for both k = 2 and k - 3.

The results in Table 4.7 should also be viewed in the light of Theorem

3.2.- Since pl+P 2 > 1 for P[2] = 0.5,0.7,0.9 of Table 4.7, we know that

E{NI(p 1,P2)} cannot be decreased for these (plP 2 ) for any sampling rule R

in the class described at the start of Section 3.1. Also, since p1+p2 < 1

for P[2] = 0.5,0.3, and 0.1 of Table 4.7, we know that had -* been used in

place of R* for these latter P[2]-values, then E{Nj(pl,P 2 )} would have

been the same as that obtained for P[2] = 0.5,0.7, and 0.9, respectively, and

* would have been optimal for P[2] = 0.5,0.3, and 0.1 in the same sense that

R* was optimal for 0.5, 0.7, and 0.9.

Tables 4.8, 4.9 and 4.10 show for k - 2 and n = 5, 10 and 20,

respectively, how the distribution of N, and E{N} react to changes in P[2]

when P[2] "0.2 = Pil" Tables 4.19 and 4.20 give analogous results for k = 3

and n = 5 and 7, respectively, when the value of P[3]
0.2 = P[2] P[il

changes.
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The results in Tables 4.8, 4.9, 4.10 and 4.11A should be compared with

those in Tables 4.4, 4.5, 4.6 and 4.7, respectively, and the results in Tables

4.19, 4.20 and 4.21A with those in Tables 4.16, 4.17 and 4.18, respectively.

Such comparisons show (for the k- and p-values considered) how much E{N}

decreases as the configuration of the p[i] (1 < i < k) becomes "more

favorable" (by 0.2) to the experimenter, e.g., compare the results in the

P[2] = 0.9 (P[3] = 0.9) column of Table 4.11A (Table 4.21A) with the

corresponding results in the P[2] = 0.7 (P[3] = 0.7) column of Table 4.7

(Table 4.18). This type of phenomenon is exhibited even more strikingly for

k = 3 in Tables 4.22, 4.23 and 4.24A.

Theorem 3.2 is, of course, also relevant to the results in Table 4.11A, as

is Conjecture 3.1 to the results in Tables 4.18, 4.21A and 4.24A. Until

Conjecture 3.1 can be resolved analytically, the authors would be very much

interested in learning of any computational results (if such exist) which might

indicate that Conjecture 3.1 is false.

5.2 Distribution of N(i) and E{N(i)I (I < i < k)

As remarked at the outset of Section 5, the distribution of N M and

E{N(i)1 (I < i < k) are of interest in various areas of application, e.g.,

E{N(1)1 is important in clinical trials where pi denotes the probability of

"success" using treatment i (I < i < k), and E{N( 1)} denotes the expected

number of patients subjected to the least effective treatment. One would hope

that E{N(1 )} for P* would be small relative to n if P[I] << P[2]"

Table 4.15 provides numerical evidence to this effect for k = 2 while

Table 4.27 provides even more striking evidence for k = 3. We note from both

tables that E{N( 1 )}/n is a decreasing function of n. A comparison of

corresponding results in Tables 4.15 and 4.11A also shows for k = 2 that
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E{N( 1)}/E{NI is a decreasing function of n; the same conclusion is reached

for k = 3 from the results in Table 4.27 where E zN} = = EfN(i)}. Thus

P* does indeed behave as one would hope for P[] < P[2]' and for fixed k

and e = (pl,...,Pk) its performance improves in terms of E{N(1 )}/kn and

EIN(1)I/EINI as n increases.

We also point out that Theorem 3.3 is relevant to the E{N(1)} results in

the columns headed P[ 2 ] - 0.5.0.7,0.9,1.0 in Table 4.15, i.e., the E{N(1)1

results given in these columns cannot be decreased if one restricts

consideration to sampling rules R (described at the outset of Section 3.1).

However, Theorem 3.3 is specific to the case k = 2, and at the present time

we do not have an analogous theorem for k > 3.

Remark 5.1: We were surprised to note in Table 4.13 which is for k = 2 with

P[2) = P[1 +0.2 that when n = 10, E{N( 2)} is a strictly decreasing

function of P[2] (as one might expect) as P(2] increases from 0.2 to 0.9,

but E{N(2 )} for P[2] 
= 0.9 is less than EIN( 2 )} for P[2] =  O;in

additional calculations not presented herein this same phenomenon prevailed for

all n (9 < n < 18) but not for 1 < n < 8 or for n = 19,20. We are

uncertain as to the cause of this behavior. However, we point out that a dis-

continuity occurs in the distribution of N(2 ) as P[2] + 1; for

P[1]- P[21 < 1 the random variable N(2 ) can assume all of the values

O(l)n; however, for Pill < P[2] = 1 = P[2] = 1) we see that N(2 )

can assume only the values O,n-l,n (O,n); finally, for P[,] = 0, P[2] = I

we note that N(2 ) equals n-l or n. Also, presumably there is a

differential effect as n and/or P[2] and A change.

Remark 5.2: An upper bound for E{N.} (i k) is derived in Appendix 0,

and its goodness is assessed.
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5.3 Probability of correct selection

Table 4.118 shows for k = 2 how the P{CS} increases with increasing n

when P[2] "0 "2 = P~jl' and P[2] has one of the selected values in the table.

Table 4.21B provides the same information for k = 3 when P[3]-0 .2 = P[2] =

P~ll' and P[3] has one of the selected values. It Is to be noted, for

k = 2 and all n, that P{CS} for (P[ll = a, ii&) equals P{CS}

for (P[l] = 1-a-A, P[ 2 ] = 1-a) for all (a,A) wit* ( , a > 0, &+a < 1.

(A = 0.2 in Table 4.11B and a = 0.4(0.1)0.8.) However, for k = 3 it is

only true asymptotically (n * -) that P{CS} for (PIl] = P[2] = a,

P[ 3] = a+A) equals P{CS} for (P[ 1 ] = P[2] = I-a-A, P = -a) for all

(a,A) with a > 0, A > 0, a+A < 1; an appreciation of the rates at which

these probabilities approach equality as a function of n for selected

a and A = 0.2 can be obtained by comparing in Table 4.21B the entries in

the column headed P[3 ] = 0.3 (0.5) with those for corresponding n in the

column headed P[3] = 0.9 (0.7), i.e., a = 0.1 (0.3). In this connection see

Appendix B.

Remark 5.3: We point out that for k = 2 and all n, E{N} for (P[I] = a,

P[2] 2 a+A) is greater than (less than) E{N} for (P[lJ = 1-a-A, P[2] = 1-a)

if A < I-2a (A > l-2a); also, for k a 3 and all, n, E{N} for

P[I] P[2] z a, P[3] = a+A) is greater than (less than) E{Nj for

(PCIl = P[2] 1 l-a-A, P[3] = 1-a) if a < 1-2a (A > l-2a), for all (a,A)

with a > 0, A > 0, a+A < 1. This behavior of E{N} is unlike that of P{CS}

as described above. In fact, for k a 2 and all n, E{N} is a decreasing

function of P[2] if P[2] "A " P[lJ' and for k a 3 and all n, E{N} is a

decreasing function of P[3] if P[3]-A = P[2) P[* l" Tables 4.11A and 4.21A

illustrate this phenomenon for k a 2 and k = 3, respectivelywhen A - 0.2.
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Tables 4.118 and 4.21B can be used as in Sobel and Huyett [1957), equation

(12), for designing experiments, i.e., for choosing n, to guarantee the

indifference-zone probability requirement

P{CSJ > P* whenever P[R-I] < P[k-13 d P k k] (5.1)
k-]P <P[k-I] P3"]M- ~] Pk

where 'kP) with 0 < Plk] < 1 and I/k < P* < I are

specified by the experimenter prior to the start of experimentation. In Table

4.11B (4.21B) one can regard P[2] (P[3]) as playing the role of P[2] (P*3])

and P[i] (PF2 ) as playing the role of P[1] (PF2 1) with(P[2][2])P[2]'P[1]

(p[3]-P[2]) equal to 0.2. (Note: Our P[i] (P*i]) is denoted by

(p[k-i+l]) (1 < i < k) in Sobel and Huyett.) Thus, e.g., referring to

Table 4.218 we see that for k = 3 and a specification of P[3] = 0.5,

P[2] = 0.3, P* a 0.95, a single-stage sample size of approximately n = 43

will be required to guarantee the probability requirement (5.1).

Tables 4.118 and 4.21B can also be used in conjunction with Tables 4.11A

and 4.21A, respectively. For example, if an experimenter chooses his

single-stage sample size n to achieve a P{CS} in Table 4.1IA or 4.21A using

the probability requirement (5.1), then Tables 4.118 and 4.218 give E{N} for

P* used with that sane n, and the experimenter is assured (from Theorem 3.1)

that P* achieves the same P{CS} as the single-stage procedure uniformly in

the unknown =(PIP2""'Pk)"
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Appendix A. Exact formula for P{CSI(RSS,TSS)1 in the configuration

P[13 P [k-1] = k]'

For a >0 letI [k] P and P[1) . P [k-1] =(A.1)

Define

and

b. (p) = a.(p) (1 < i< n) and bop 0.

Then when the p1 (1 < i < k) are in the configuration (A.1) we have

P{CS((RSSTSS)1 given by

I _ [1 p (b1+1(P-A)) k _ (bi (P-,&)) k* (A.2)

i=0 ka (p-,&)

Equation (A.2) provides an 0(n) algorithm for the computation of

PfCSI(RSS,T'SS)l for any k given (A.1).

When p I equation (A.2) reduces to

PC1[I (,( ,n~k I (A.3)
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Appendix B: Normal approximation to P{CIj(RSS,rSS)} in the configuration

P,1] z P[k-l) = P~k]YA for large n

When n is large and P[k] = P (say), PMl P ~k-l) = p-A we

have that P{CSI(RSSTSS)} is given approximately (see Sobel and Huyett

[1l9573, equations (A38) and (A39)) by

-vi Ai (n < i < k-I)} (8.1)

60l-0 + (p-,&)(l-p+A&)

where Zi (1 < i < k-1) have a standard (k-1)-variate equi-correlated normal

distribution with

p= Corr{Z1 ,lzi I =pOl-p) (B.2)
2 p(I-p)+ (p-A)(l-p+a)

The constant ck,~ in the equation

Piz ' (1 < i < k-1)} P (8.3)

has been tabulated for selected (k,P,p). For example, Table 1 of Bechhofer

[1954] gives c k.Pp for k - 2(1)10, p - 1/2 and a large range of P-values.

Table 1 of Gupta, Nagel and Panchapakesan [1973) gives c kPp V' for

k 2(151, a large range of p-values, and P - 0.75,0.90,0.95,0.975, and
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0.99. Using these tabulated c-values it is possible to obtain an excellent

large-sample approximation to n for given (k,P,p) using the relationship

n . p(1-p) + (p-A)(l-p+A) (ck,P,p)2 (B.4)
A2  2

Example B.1: Suppose that k = 2. Then (8.3) reduces to a univariate

integral. For P = 0.995 (say) we find from Table 1 of Bechhofer [1954] that

C2,P,p = C2,0. 99 5 = 3.6428. Hence, from (B.4) for P[2] = 0.6, a = 0.2 we

obtain

2
n - 0.48 (3.6428) 6(3.6428)2 = 79.62.

(0.2)2 2

Also, for P[2] * 0.9, A - 0.2 we obtain

n = 0.30 (3.6428)2 = 3.75(3.6428)2 = 49.76.

(0.2)2 2

We note from Table 4.11B that the exact probabilities associated with

P[2] z 0.6, A = 0.2, n = 80 and P[2] = 0.9, A = 0.2, n = 50 are 0.9946 and

0.9950, respectively; thus the agreement here with P = 0.995 is excellent.

Example 8.2: Suppose that k = 3. Then (B.3) is a bivariate integral, and the

associated correlation coefficient p which is given by (B.2) depends on the

specified values of p and A. For (p - 0.5, a - 0.2) and (p - 0.9,

A •0.2) we have from (B.2) that p - 0.543 and p - 0.600, respectively.

Then for P - 0.95 (say) we find from Table 1 of G-N-P [1973] that
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C3 ,P = C3 0 .9 5 ,0 .5 4 3  OT/ (1.908), and hence from (B.4) for P[31 0.5,

A=0.2 we obtain

n 0.-46 (V2- (1.908) -)2 = 11.5(1.908)2 = 41.9;
0.04 2

similarly, for P = 0.95 we find from Table 1 of G-N-P [1973] that

c ~ 3,.5,. (1.8997), and hence from (8.4) for P[3] =0.9, 1 0.2 we

* obtain

n =0.30 (/72 (1.8997))2 = 7.5(1.8997)2 =27.1.
0.04 2

We note from Table 4.21B that the exact probabilities associated with

P[31 = 0.5, A=0.2, n = 42 and P[3] = 0-9, A = 0.2, n =28 are 0.9469 and

aid 0.9494, respectively; thus the agreement here with P =0.95 is also

excellent (even though the sample sizes are quite a bit smaller than the

corresponding ones of Example B.1).
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Appendix C: Recursion formulae for EfNI for P* when k = 2

At stage m denote n-ni, m  and zl,m-z2,m by mi  (i = 1,2) and y,

respectively, where ni m  and zi' m  (i = 1,2; 1 < m < 2n-l) are defined in

the first paragraph of Section 2. Define

f = (n2,m- Z2,m - (nl,m-zl,m) = m1 -m2+Y.

It can be shown (see Lemma 4.1 of Kulkarni [1981]) that the expected total

number of observations from stage m until termination depends only on

(Y,ml,m 2 ), i.e., only on (f,ml,m 2). It is clear that if Procedure P* is

used, the number of failures from the two populations differ at most by unity,

i.e., f = -1 or 0 or 1. Define

A(ml,m 2) = E{Nj(mlm 2 ), f = 1}

= expected total number ot observations required until

termination starting from (m1 ,m2) when f = 1.

Similarly define

B(mI,m2 ) = E{Nl(m I ,m2 ), f = -I}

and

C(ml,m 2 ) = E{N'(m1,m2), f = 0}.

Then the following recursion formulae can be seen to hold for P*:
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For ml > 2, i 2 > 0,

A(m1,m 2) = 1 + pA(ml-l'ni2) + (1-p1 )C(ml-l ,m2). (C.la)

For i1 > 0, in2 > 2,

B(n11,m2) =1 + P2 B(m1,In2-1) + (1-P2)C(rn 1,i2-l). (C.lb)

For ml > 1, m2 > 1

1 + p1C(n1-l'in 2) + (1-p1I )B(m1-1 ,i2) if m < (i 2,

1+ P2C(in1,i2-l) + (1-p2 )A(rn1,r2-l) ifmI> 2

C(ni1,m2) =(~c

1 + (1/2)p1 C(in1 -l,m2 ) + (1/2)(l-p)B( 1 -1,Im2 )

+ (1/2p2 C~nim 2 -1)+ (1/2)(l-P2 )A(m1 ,n12 1) if 1 =r.

The boundary conditions are

A(l,m 2) =0, 8(i1,) =0, C(OIm 2) =0, C(rn1,Q) =0. (C.2)

Equations (C.1) and (C.2) can be solved recursively for any (nin) to yield

for any given n and

E{Njp~jjtP[2j1 C(n,n).
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Thus by solving this one set of equations, E{Nj(P[I],P[2])1 can be found for

all n. This method was used for computing the entries in Tables 4.7 and

4.lA.

In certain special cases the recursion equations can be solved to yield

closed form expressions for E{NI(P[I],P[2])I.

Case 1: P[I] = p, P[23 = 1. Then

EINI(pl) /n + p(l-pn)/ 2(1 -p) - npn/2 if p < 1

n if p = 1.

Case 2: P[1] = 0 P[2] = p. Then

f n(2-p) + pn(l-p)/2(l-2p)

E{NI(O,P)} = - (l-p)n(2-3p)/2(l-2p) if p 1 1/2

3n/2 - (n+l)/2 n+l  if p = 1/2.

In particular, E{NI(O,O)} = 2n-l.

Remark C.l: Similar recursion formulae can be derived for

E{NI(Prl],P[ 2l... ,P[k)}1 when k > 2. (See Section (5.6) in Kulkarni

[1981].) Closed form expressions for E{NI(P[l],P[2],...,p[k])} can be

obtained in certain special cases. For example when P[1] P[t =0,

P[t+l] = P[k] = 1 (1 < t < k-l) we have

Case 1: 1 < t < k-2

t s
E{N} - n + [(k-t)/k] I s n (t-j+l)/(k-j)

s-l J-z

Case 2: t = k-l

E{N} - n + (k-2)(k+l)/2k.
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Appendix D: An upper bound for E{N(i)} (i < k) for P*

An upper bound for E{N(i)} (i < k) can be derived for k > 2 using

the fact that for P*, at any stage the numbers of failures from any two
iF

populations differ by at most one. Let Ni derote the total number of
(i)4

failures at termination from the population associated with p[i] (I < i < k)

Then, in particular, we have

N F F (i < k

and hence

MIIE{N~i)}. K_ E{Nk)} + 1 (i < k).(0)

However,

E{N~i)} = (l-P[i])E{N(i)I (1 < i < k). (0.2)

Combining (D.1) and (0.2), and noting that E{N(k)} < n we have for i < k

that

(l-p[i])E{N(i)} < 1 + (l-P[k])E{N(k)} _ 1 + (l-P[k])n,

and therefore for P[i] * 1 (i < k) we have

E{Nci)J < [1 + (1-P[k])n]/(1-P[i]). (0.3)

Using (D.3) we have

k k-IE{N} = I E{N(i)} . l+ (l-P[k])n]/()-p[i]) + n. (0.4)

The computational results in Tables 4.15 and 4.27 indicate that the bound (D.3)

is quite good for large n as is seen from the following examples:

4LI
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a) From Table 4.15 when n = 100 we have for (P[11 = 0.0, P[2] = 0.2)

that E{N( 1 )} = 80.000 while (D.3) yields E{N()1 __ 81.0; also from

Table 4.15 when n = 100 we have for (pl,] = 0.7, P[2] = 0.9) that

E{N(l)} = 33.334 while (D.3) yields E{N(I)} _ 36.7 For these same cases,

from Table 4.11A we have E{N} = 180.000 and E{N} = 133.332 while (D.4)

yields E{N} < 181.0 and E{N} < 136.7, respectively.

b) From Table 4.27 when n = 40 we have for (P[l] - 0.5, P[2] = 0.6,

P[3] = 0.7) that E{N(1) = 23.178, E{N( 2)1 = 29.025, while (D.3) yields

E{N()1 _ 26.0, EfN(2)1 < 32.5; also from Table 4.27 when n = 40 we have
for (Pill = 0.3. P[2] = 0 6, P[3] = 0.9) that E{N(1)} = 5.727,

E{N( 2)} = 10.045, while (D.3) yields E{N( 1)1 _ 7.1, EIN(2)} _ 12.5.

For these same cases, from Table 4.24A we have E{NI = 90.851 and

E{NI = 55.761 while (D.4) yields E{N} S 98.5 and E{N} _ 59.6.

respectively.
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n a recent paper, Bechhofer and Kulkarni proposed closed adaptive

sequential procedures for a general class of k-population Bernoulli selection

goals. These sequential selection procedures achieve the sane probability of a

correct selection, uniformly in the unknown single-trial "success"

probabilities p (I < i <k), as do the corresponding single-stage selection

procedures which take exactly n observations from each of the k

populations. The sequential procedures always require less (often

substantially less) than kn observations to terminate experimentation. This

earlier paper described the procedures, discussed their performance in neral

terme-1-,anVcited several of thei-F-6TT- Ypropert

(>In the present paper we specialize these procedures, and focus on the

particular goal of selecting the population associated with where

are the ordered Pi (I _i!< k). We give exact numerical

results for such performance characteristics of the se uential procedure (P*)

as the distribution of the total number of observatio N(i) taken from the

population associated with P[i] (1 < I < k), an he total number of
kr

observations N - i. taken fro-all k populations, when the procedure

terminates sampling. A simple upper bound for E(N(t)l (i * k) is given.

These results along with other related ones will assist the potential user of

the sequential procedure tn assessing its merits relative to those of other

compet ing procedures.
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